
Uncertainty quantification and exascale Optimization and exascale Concluding remarks

Hierarchical multilevel methods for exascale
UQ and optimization

Challenges and Possible paths forward

Clayton Webster? & Stefan Wild†

?Department of Computational & Applied Mathematics (CAM)
Oak Ridge National Laboratory, and

Department of Mathematics, University of Tennessee

†Computer Science and Mathematics Division
Argonne National Laboratory

July 11, 2014

C. Webster & S. Wild — Exascale math - July 11, 2014 1/27



Uncertainty quantification and exascale Optimization and exascale Concluding remarks

Outline

1 Uncertainty quantification (UQ) and exascale

2 Optimization and exascale

3 Concluding remarks

See Section 4.2.2 and 4.2.3 in the Applied
Mathematics Research for Exascale →

C. Webster & S. Wild — Exascale math - July 11, 2014 2/27



Uncertainty quantification and exascale Optimization and exascale Concluding remarks

From petascale to exascale
Some challenges remain but new challenges (and opportunities) emerge

In moving towards exascale, several challenges arise when applying UQ
methodologies to the DOE mission science areas.

1 Detection and quantification of high-dimensional stochastic QoIs with a
specified certainty

2 Reducing the computational burden required to perform rigorous UQ

3 Efficient strategies for UQ that exploit greater levels of parallelism provided by
emerging many-core architectures

4 Systematic assimilation of the uncertainty in measured data for validating and
correcting model bias, calibrating parameter interrelations, and improving
confidence in predicted responses
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EQUINOX: An architecture-aware, predictive capability for explaining how the
uncertainties, ubiquitous in all modeling efforts affect our predictions and
understanding of complex phenomena
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Forward UQ: PDEs with random input data
Complexity reduction for uncertainty quantification

parameters
y(ω), ω ∈ ΩP −→

SPDE model:
L(u,y) = f

for a.e. x ∈ D ⊂ Rd
−→

quantity of
interest
Q[u(·,y)]

The parameters y(ω) may be affected by uncertainty (experimental data,
incomplete description of parameters, unresolved scales, etc.)

y : Ω→ Γ ⊂ RN can be assumed to be a random vector with N components,
i.e., y = (y1, . . . , yN ), with joint probability density function ρ(y)

The solution u is a stochastic function, u(·,y)

Goals of forward UQ: Approximate u or some statistical QoI depending on u, i.e.

E[u], Var[u], P[u > u0] = E[1{u>u0}]

with as minimal computational cost as possible
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Brief taxonomy of (current) numerical strategies
Stochastic FEMs [Gunzburger-W-Zhang, Acta Numerica 2014]

Let HM (Γ) = {ym ∈ Γ}Mm=1 denote a set of (possible random) sample points

Let uh(x,ym) := uh(ym) for m = 1, . . . ,M denote the finite element
approximation to the parametric PDE on a fixed mesh h

Monte Carlo methods

E[u] ≈ EM [uh] =
1

M

M∑
m=1

uh(x,ym)
pro: convergence rate is independent of N

con: asymptotic rate is O(1/
√
M)

Stochastic polynomial methods

Stochastic Galerkin: projection technique, intrusive approach

Stochastic collocation: interpolation technique, non-intrusive approach

u ≈ u(SL)
M,h =

M∑
m=1

cm(x)ψm(y)
pro: convergence can be faster than MC

con: curse of dimensionality

{ψm} ∈ P(Γ) polynomial basis and cm determined through, e.g., uh(ym)
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Scalability constraints of current UQ
Näive implementations yield suboptimal efficiency

Exascale will require
... billion-way parallelism
... with less memory per core
... at potentially lower clock speeds

Current UQ approaches (both non-intrusive and intrusive) provide massive
parallelism, but they don’t scale (well) now and won’t scale in the future:

Independent simulation → easy parallelism...
... but independent instantiations → poor memory resource usage.
This approach eats memory as fast as it fills compute cores

Independent solves means that similarity between systems
cannot be exploited for improved efficiency

Process-level parallelism is simple, but finer-grained parallelism
(thread and vector) is superior

This näive approach is ultimately too restrictive
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An embedded UQ paradigm
Simultaneous propagation on ensembles

Complex system

Nonlinear

ut − N
�
a(y(1)), u

�
= 0

y(2)y(1) y(K)

Complex system

Nonlinear

Complex system

Nonlinear

ut − N
�
a(y(2)), u

�
= 0 ut − N

�
a(y(K)), u

�
= 0

u1(x, tn) = u(y(1), ·) u2(x, tn) = u(y(2), ·) uK(x, tn) = u(y(K), ·)

· · ·

· · ·

· · ·

u(y, x, tn) =

K�

k=1

uk(x, tn)Lk(y)

K systems of size J × J

Key Idea: Simultaneous propagation of
samples through a single program instantiation,
allowing:

block solvers to exploit related systems to
accelerate solver convergence

finer-grained parallelism to yield speedup
even for a single core

shared-memory parallelism to permit
sharing common data and reducing
contention for memory resources

Result: faster time-to-solution, independent of
parallel speedup (esp. important if
power/reliability require slower clock speeds)
and reduced memory resources

These benefits are significant on current architectures,
and will be crucial for future extreme-scale architectures
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Multilevel hierarchical UQ methods
Reduce, reuse and recycle - exploit the hierarchies!

· · ·

adaptive level l = 1

· · ·

· · ·

· · ·
y1

1 y1
2 y1

K1

u1
K1
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, ·)u1
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2, ·)u1
1(x, tn) = u(y1

1, ·)

ut − N
�
a(y1

1), u
�

= 0 ut − N
�
a(y1

2), u
�

= 0 ut − N
�
a(y1

K1
), u

�
= 0 · · ·

· · ·

· · ·
y2

1 y2
2 y2

K2

u2
1(x, tn) = u(y2

1, ·) u2
2(x, tn) = u(y2

2, ·) u2
K2

(x, tn) = u(y2
K2

, ·)

ut − N
�
a(y2

K2
), u

�
= 0ut − N

�
a(y2

2), u
�

= 0ut − N
�
a(y2

1), u
�

= 0

adaptive level l = 2

· · ·

· · ·

· · · yL
KLyL

1 yL
2

ut − N
�
a(yL

1 ), u
�

= 0 ut − N
�
a(yL

2 ), u
�

= 0 ut − N
�
a(yL

KL
), u

�
= 0

uL
KL

(x, tn) = u(yL
KL

, ·)uL
2 (x, tn) = u(yL

2 , ·)uL
1 (x, tn) = u(yL

1 , ·)

adaptive level l = L

u(y, x, tn) =

L�

l=0

�

|i|≤l
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ul
i,j(x, tn)ψl

i,j(y)

Exploit similarities between block system across the hierarchical adaptive levels
of both the deterministic and stochastic approximations

Embedded UQ approach permits recycling Krylov subspace solvers, providing
another opportunity to reduce time-to-solution and memory consumption
through reduced solver iterations
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Embedded UQ methods
Ensemble AMG-preconditioned CG speed-up
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Embedded UQ methods
Ensemble matrix-vector product speed-up
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Hierarchical stochastic collocation (HSC) methods
Complexity reduction through solution acceleration

At level L ∈ N+, a hierarchical SC approximation is (informally) defined by:

uML,h = IML [uh] ≡ IML−1 [uh] + ∆L[uh]

IML−1 [uh] is the hierarchical interpolant at level L− 1, and
∆L[uh] is the corresponding hierarchical surplus interpolant at level L

An approach for reducing complexity
- exploit the stochastic hierarchy

Construct lower level interpolants
uML−1,h(x, ỹk) for {ỹk} ∈ ∆HML

as an initial guess for uML,h(x,y),
to accelerate the underlying
(iterative) deterministic solvers

H0,2

i 2
=

2

H0,1

i 2
=

1

H0,0

i1 = 0

i 2
=

0

H1,2

H1,1

H1,0

i1 = 1

H2,2

H2,1

H2,0

i1 = 2

Isotropic sparse grid H2
2

Adaptive sparse grid Ĥ2
2

[Gunzburger-W-Zhang, 2013, Jantsch-Galindo-W-Zhang, 2014]

C. Webster & S. Wild — Exascale math - July 11, 2014 12/27



Uncertainty quantification and exascale Optimization and exascale Concluding remarks

Computational savings of HSC methods
QoI = E[u] for nonlinear elliptic SPDEs (CG iterative solver)

Figure Savings versus level and savings versus error for L = 1/64 (left) and L = 1/2 (right)
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Multilevel stochastic collocation (MLSC) methods
Exploit the deterministic hierarchy [Gunzburger-Jantsch-Teckentrup-W, 2014]

Basic idea: As in the single level case, to increase convergence (compared to
MLMC), we simply interpolate the differences uhk − uhk−1 at different resolutions

u
(MLSC)
K =

K∑
k=0

IMK−k

[
uhk − uhk−1

]
=

K∑
k=0

(
u
(SL)
MK−k,hk

− u(SL)
MK−k,hk−1

)
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For a given accuracy, multilevel methods seek to reduce complexity by spreading
computational cost evenly across several resolutions of the spatial discretization
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Computational savings of MLSC methods
Results in 10D
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Figure Left: Cost versus Error for D = (0, 1)2, N = 10. Right: Number of samples per level
(predicted vs actual).
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Computational savings of MLSC methods
Results in 20D
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Optimization and Exascale Computing

Expect exascale computing to:

Enable consideration of optimal design for new application areas

Drive new (at this scale/difficulty level) optimization problems
Mixed-integer PDE-constrained optimization

Global optimization

Robust optimization, Optimization under uncertainty

Require fundamentally different algorithmic approaches
Breaking outer optimization loop-inner simulation separation

Concurrent/multi-point function-derivative-subproblem evaluations

Multifidelity/hierarchical methods

Algorithm-based fault tolerance
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New Paradigms
Mixed-Integer PDE-Constrained Optimization Under Uncertainty

min
x,y(ω),z

{Eω [f(x;y(ω); z)] : c(x;y(ω); z;ω) = 0 a.s. in Γ, ∀x ∈ X , z ∈ Znz ∩ Z}

Ef Objective

x Continuous design variables

y(ω) State variables depending on random variables ω ∈ Ω

z Integer design variables

c Linking constraints (PDE and boundary conditions)

X ,Z Design constraints
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New Paradigms
Sample Challenges/Opportunities

MIPDECO adds a combinatorial explosion to PDECO

Branch and bound tree [Leyffer & Mahajan]

Each node is a PDECO solve

Rethink today’s PDECO (e.g., [Biros & Ghattas: LNKS])
Integrate multilevel combinatorial with multilevel PDE

Map related PDE/PDECO solves to machine to exploit reuse

Allow for approximate/multifidelity PDE/PDECO solves
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Mathematical/Numerical Optimization
Today’s Generic Methods

Current iterate xk ∈ Rn
1 Generate direction(s) dk ∈ Rn

Ex- Newton(-Krylov) direction: Hkdk =(≈)−gk
Hk ≈ ∇2f(xk))

(
or ∇2L(xk)

)
,

gk ≈ ∇f(xk)
(
or ∇L(xk)

)
Ex- Sequential quadratic programming:

min
d∈Rn

{
dTHkd + dT gk : ∇c(xk)d + c(xk) = 0

}
Ex- Stochastic: −

(
∇f(xk)Tdk

)
dk, random dk

2 Determine step length αk > 0
Ex- Line search: approximately solve

minα≥0 φ(xk + αdk) using merit function φ

Ex- Trust region: constrain ‖αkdk‖ ≤ ∆k

Ex- Fixed step size: αk = κk

3 Update xk+1 = xk + αkdk,
evaluate f(xk+1), ∇f(xk+1), . . .

Inherently sequential
iterations

Typical focus:
reduce work/time
per iteration

Appeal to
Newton/Nesterov
for fast convergence

Evaluations of f ,
∇f , Hv, . . . occur
sequentially

Requires global
synchronization at
each k (except for
very special cases)
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Today’s Parallel Methods
Single Point per Iteration

1 Parallelize linear algebra within iteration
Used to evaluate f , ∇f , . . .

Matrix-free Jacobian-/Hessian-vector products
Ex.- Toolkit for Advanced Optimization based on PETSc [Munson et al]

Exa! Explosion of concurrency: optimization must take part

2 Multilevel optimization methods
Rely primarily on grid structure for variables
Ex- [Toint et al], [MG/OPT: Lewis & Nash]

Exa! Does not fully account for architectural hierarchies, adaptivity, multiphysics, . . .

3 Assume function (+derivative) evals succeed at demanded tolerance
Exa! Pay price for demanding resilient computation

Exa! Analysis for ABFT to enlarge classes of failures under which some form of
convergence still ensured
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Today’s Parallel Methods
Concurrent Evaluations

Primarily for derivative-free methods (e.g., ∇f(x) unavailable)

Ex- HOPSPACK [Kolda et al]: Evaluate {f(xk + di) : i = 1, . . . , p} concurrently

Ex- VTDIRECT [Watson et al]: Concurrent evals for (approx) global optimization

Ex- POUNDERS [W.]: Evaluate residuals concurrently

Ex- Heuristics (GAs, particle swarm, . . . ): Concurrent generation evaluation

Poor scaling of time to solution with respect to # of concurrent evals

Ex- POUNDERS (single evaluation) only 3 times slower than PSO (1024 concurrent
evals) on accelerator design problem
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Require New Methods and Analysis
Increased Concurrency for Derivative-Based Solvers?

Analysis to determine classes of problems where this works

Krylov-based solutions to minx∈Rn {‖Ax− b‖}
s-step methods [Chronopoulos 1991]

CA/CH methods using matrix power kernel Au,A2u, . . .

Increase arithmetic intensity by evaluating local ensembles of related points

Subspace/decomposition techniques
Trivial for separable problems (xi ∩ xj = ∅, i 6= j):

min
x∈Rn

{
p∑
i=1

fi(xi)

}
−→ min

xi∈Rni
{fi(xi)} , i = 1, . . . , p

More general: orthogonal/iterated subspaces + a synchronization step [Gould et al,

1994], [Yuan, 2007], [Gratton et al, 2014]
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Decomposition to Reduce Outer Iterations
Back to the Future

Parallel variable distribution [Ferris & Mangasarian, 1994]

1 Generate partitioned direction d = (d1, . . . ,dp) ∈ Rn, di ∈ Rni

Not block Jacobi/coordinate search because of d

d: Newton direction, steepest descent, . . .

2 Concurrently solve p (ni + p− 1)-dimensional subproblems

min
xi∈Rni ,ui∈Rp−1

{f(xi,D−iui) : (xi,D−iui) ∈ X}

to obtain yi = (xi,D−iui) ∈ Rn

3 Obtain xk+1 = vp+1x
k +

∑
i viy

i from (p+ 1)-dimensional subproblem

min
v∈Rp+1

{
f

(
vp+1x

k +
∑
i

viy
i

)
: vp+1x

k +
∑
i

viy
i ∈ X , vT e = 1

}
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Optimization Under Uncertainty
Example: Sample Average Approximation

Approximately solve stochastic program

min
x∈X⊂Rn

{Eω [f(x;ω)] : c(x;ω) = 0 ∀ω ∈ Ω}

by solving

min
x∈X

{
N∑
i=1

f(x;ωi) : c(x;ωi) = 0, i = 1, . . . , N

}

using the N scenarios ω1, . . . , ωN

Constraint/objective evaluation
naturally parallelizable in
scenarios

Specific forms of f , c, X
enable scalable linear algebra

! Increased scenarios for exascale
concurrency rarely (never?)
useful

! Number of outer iterations (=
global reductions) does not
decrease as N grows
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Today’s Parallel Methods
SAA at the Petascale

A special case: 2-stage programs

f convex, quadratic

C linear (equalities) with a recourse term
for each scenario

Interior point methods solve arrow systems
Ak

1 Bk
1

. . .
...

Ak
N Bk

N

Bk
1
T · · · Bk

N
T

Ak
0

 δk+1 = rk

in each iteration.
Dominant expense: Schur complements

Bk
i

T
(
Ak
i

)−1

Bk
i

Solving energy unit
commitment problems
using PIPS

[Lubin, Petra, Schenck,

Anitescu et al 2011–]
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Concluding remarks

Exascale optimization and uncertainty quantification methods must break the
outer loop mentality:

exploitation of shared data structures for reduced memory usage

realize massive parallelism through simultaneous propagation

solution techniques for selectively coupled systems

optimal propagation sets via selective coupling

embedded optimization and UQ capabilities will enable confident predictions of
new application areas

Moreover, such embedded approaches will facilitate the acceleration, and thus,
reduce overall complexity of (linear and nonlinear) solvers by exploring
multilevel methods and exploiting the inherent hierarchies

Lots of challenges:
significant effort to refactor simulation codes

solvers/preconditioners must be optimized for embedded approaches

memory access patterns will become critical

propagating samples together requires commonality in solution process . . .
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